Negative Feedback Governs Gonadotrope Frequency-Decoding of Gonadotropin Releasing Hormone Pulse-Frequency
نویسندگان
چکیده
The synthesis of the gonadotropin subunits is directed by pulsatile gonadotropin-releasing hormone (GnRH) from the hypothalamus, with the frequency of GnRH pulses governing the differential expression of the common alpha-subunit, luteinizing hormone beta-subunit (LHbeta) and follicle-stimulating hormone beta-subunit (FSHbeta). Three mitogen-activated protein kinases, (MAPKs), ERK1/2, JNK and p38, contribute uniquely and combinatorially to the expression of each of these subunit genes. In this study, using both experimental and computational methods, we found that dual specificity phosphatase regulation of the activity of the three MAPKs through negative feedback is required, and forms the basis for decoding the frequency of pulsatile GnRH. A fourth MAPK, ERK5, was shown also to be activated by GnRH. ERK5 was found to stimulate FSHbeta promoter activity and to increase FSHbeta mRNA levels, as well as enhancing its preference for low GnRH pulse frequencies. The latter is achieved through boosting the ultrasensitive behavior of FSHbeta gene expression by increasing the number of MAPK dependencies, and through modulating the feedforward effects of JNK activation on the GnRH receptor (GnRH-R). Our findings contribute to understanding the role of changing GnRH pulse-frequency in controlling transcription of the pituitary gonadotropins, which comprises a crucial aspect in regulating reproduction. Pulsatile stimuli and oscillating signals are integral to many biological processes, and elucidation of the mechanisms through which the pulsatility is decoded explains how the same stimulant can lead to various outcomes in a single cell.
منابع مشابه
Pulsatile and Sustained Gonadotropin-releasing Hormone (GnRH) Receptor Signaling
Gonadotropin-releasing hormone (GnRH) acts via G-protein-coupled receptors on gonadotrophs to stimulate synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. It is secreted in pulses, and its effects depend on pulse frequency, but decoding mechanisms are unknown. Here we have used an extracellular signal regulated kinase-green fluorescent protein (ERK2-GFP) reporter t...
متن کاملGenomics view of gonadotrope signaling circuits.
Gonadotropin-releasing hormone (GnRH) binds to the pituitary GnRH receptor to activate signal transduction cascades that ultimately modulate gonadotropin biosynthesis. Comprehensive studies of the GnRH-activated gene program in the LbetaT2 gonadotrope cell line have greatly increased our knowledge of the number of early and intermediate gene transcripts that are modulated by GnRH. Among the cla...
متن کاملReactive Oxygen Species Link Gonadotropin-Releasing Hormone Receptor Signaling Cascades in the Gonadotrope
Biological rhythms lie at the center of regulatory schemes that control many aspects of living systems. At the cellular level, meaningful responses to external stimuli depend on propagation and quenching of a signal to maintain vigilance for subsequent stimulation or changes that serve to shape and modulate the response. The hypothalamus-pituitary-gonad endocrine axis that controls reproductive...
متن کاملG proteins and autocrine signaling differentially regulate gonadotropin subunit expression in pituitary gonadotrope.
Gonadotropin-releasing hormone (GnRH) acts at gonadotropes to direct the synthesis of the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). The frequency of GnRH pulses determines the pattern of gonadotropin synthesis. Several hypotheses for how the gonadotrope decodes GnRH frequency to regulate gonadotropin subunit genes differentially have been proposed. However...
متن کاملDecoding high Gonadotropin-releasing hormone pulsatility: a role for GnRH receptor coupling to the cAMP pathway?
The gonadotropin-releasing hormone (GnRH) pulsatile pattern is critical for appropriate regulation of gonadotrope activity but only little is known about the signaling mechanisms by which gonadotrope cells decode such pulsatile pattern. Here, we review recent lines of evidence showing that the GnRH receptor (GnRH-R) activates the cyclic AMP (cAMP) pathway in gonadotrope cells, thus ending a lon...
متن کامل